宜昌电能质量分析仪专业技术团队
电能质量控制的发展方向研究电能质量分析控制领域的基础性工作一方面要深入探索电能质量领域的基础性研究工作,包括电能质量的定义、评价标准与体系,电能质量问题的表现形式、影响因素、防治方法等。同时,积研究电能质量控制的新方法、新技术和新策略,将更为、科学的控制理念和控制思想借鉴到电能质量管理领域。推广使用数字化电能质量控制技术以DSP为基础的实时数字信号处理技术在控制领域得到广泛应用,其优点为:①可提高系统稳定性、性和灵活性;②由程序控制,改变控制方法或算法时不必改变控制电路;③可重复性好,易调试和批量生产;④易实现并联运行和智能化控制。随着DSP性能的不断改善和价格的下降,电能质量控制装置将用DSP来实现实时信号处理从而取代模拟量控制。
电能质量分析仪的特点如下:
1.多功能性:电能质量分析仪具备多种测量、分析和监测功能,能够准确地捕捉电能质量的各种问题。
2.高精度:电能质量分析仪采用高精度的测量技术和先进的算法,能够准确地测量和分析电能质量的各个参数。
3.数据通信:电能质量分析仪支持数据通信功能,可以通过RS485、RS232、USB、以太网等接口与计算机或监控系统进行数据通信,实现数据的传输和远程监控。
4.易于操作:电能质量分析仪通常具备友好的操作界面和简单的操作流程,用户只需按照操作指南进行操作即可轻松完成测量和分析工作。
宜昌电能质量分析仪专业技术团队
电能质量的控制策略与技术几种电能质量控制策略PID控制:这是应用为广泛的调节器控制规律,其结构简单、稳定性好、工作、调整方便,易于在工程中实现。当被控对象的结构和参数不能掌握,或得不到的数学模型时,应用PID控制技术为方便。其缺点是:响应有超调,对系统参数摄动和抗负载扰动能力较差。空间矢量控制:空间矢量控制也是一种较为常规的控制方法。其原理是:将基于三相静止坐标系(abc)的交流量经过派克变换得到基于旋转坐标系(dq)的直流量从而实现解耦控制。常规的矢量控制方法一般采用DSP进行处理,具有良好的稳态性能与暂态性能。也可采用简化算法以缩短实时运算时间。
宜昌电能质量分析仪专业技术团队
在工业和生活用电负载中,非线性负载占很大比例,这是电力系统谐波问题的主要来源。电弧炉(包括交流电弧炉和直流电弧炉)是主要的非线性负载,它的谐波主要是由起弧的时延和电弧的严重非线性引起的。居民生活负荷中,荧光灯的伏安特性是严重非线性的,也会引起严重的谐波电流,其中3次谐波的含量高。大功率整流或变频装置也会产生严重的谐波电流,对电网造成严重污染,同时也使功率因数降低。电力系统运行的内外故障也会造成电能质量问题,如各种短路故障、自然现象灾害、人为误操作、电网故障时发电机及励磁系统的工作状态的改变、故障保护装置中的电力电子设备的启动等都将造成各种电能质量问题。